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ABSTRACT 

In sections 2 and 3 two methods for proving the non existence of certain 
universal Banach spaces, are presented. In section 4 it is proved that every 
infinite-dimensional conjugate Banach space has a two-dimensional sub- 
space whose unit cell is not a polygon. 

1. Introduction. A Banach space X is called universal for a class of  Banach 

spaces if every member of  this class is isometric to a suitable subspace of X .  

S. Mazur has raised the question whether for a given integer j > 2 there is a 
finite-dimensional Banach space which is universal for the class of  all j-dimensional 

spaces. This question was solved negatively for j = 2 (and hence for every j > 2) 

by C. Bessaga [1]. He showed that the set of all subspaces of  a finite-dimensional 

space cannot include all two-dimensional spaces since it has a too low dimension. 

(Since we do not use this fact here we do not enter into the precise definition of 

the notions involved in it.) Klee [4] has extended considerably the argument 

of  Bessaga and obtained for example numerical estimates for the dimension 

of Banach spaces universal for all j-dimensional spaces whose unit cell is a poly- 

hedron with r vertices. 
Our first aim in this paper is to present a different method for proving the 

non-existence of certain kinds of  universal finite-dimensional Banach spaces. 

Our method seems to be conceptually more elementary than that of  Bessaga 
and Klee. We exhibit for every n a set of  2" polyhedral 3-dimensional 
Banach spaces such that no Banach space of dimension < cn/log n has all those 

spaces as subspaces. Our aim is mainly to present the method and we have not 

tried to get sharp estimates. From the results of  Bessaga and Klee it follows by 

a routine compactness argument that for every j and n there are k(j, n)j-di- 
mensional spaces such that no n-dimensional space is universal for them. I t  

seems to us that f rom the point of  view of estimates for k(j, n) our method will 

probably give better results than those obtainable by [4]. We have not checked 
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this and moreover we are sure that also the estimates of k(j,n) which can be 
obtained by our method are rather crude. 

The method used here is closely related to the one used in [7, pp. 98-99], 
for proving a result on the extension of operators. As far as Mazur's problem 
is concerned, this method has one obvious disadvantage in comparison with 
Bessaga's. It cannot be used in the case j = 2, it works only for j > 3. It is hoped 
that the method can be modified so as to solve some open problems concerning 
infinite-dimensional universal spaces (see section 5(a)). 

At the end of his paper [4] Klee mentions some infinite-dimensional questions. 
One of the questions (originally posed by S. Mazur) is whether there exists a 
separable reflexive Banach space which is universal for all separable reflexive 
spaces. This problem was solved negatively by W. Szlenk (private communi- 
cation 1965). Szlenk showed in fact that there is no Banach space X with a se- 
parable conjugate such that every separable reflexive space is isomorphic to a 
subspace of X. We present here an extremely simple solution of Mazur's problem. 
Our method is not powerful enough to derive Szlenk's result but it applies in many 
situations in which Szlenk's method does not apply. 

Section 4 is devoted to the solution of another problem mentioned at the end 
of [4]. Klee called a Banach space X polyhedral if the unit cell of every finite- 
dimensional subspace of X is a polyhedron. He showed that Co is polyhedral 
and asked whether there is an infinite-dimensional reflexive polyhedral space. 
By using a method due to Klee himself [6] we prove in section 4 that every 
infinite-dimensional space has a two-dimensional quotient space whose unit 
cell is not a polygon. Hence no infinite-dimensional conjugate space is polyhedral. 

We conclude the paper with a section devoted to open problems. 

All Banach spaces are taken over the reals. Let X be a Banach space. We denote 
by Sx(xo, r) the cell {x; II X - X o  II < r}. The unit cell Sx(O, 1)is denoted also by 

Sx. 

Section 2. We bring first three simple and well known lemmas. 

LEMMA 2.1. Let X be a Banach space and let {Sx (x~,ri)} be a fami ly  (finite 
or in[inite) of mutually intersecting cells in X .  Then there is a Banach space 
Y = X with d i m Y [ X =  1 and a point y e  Ysuch that [ l Y -  x, it <=r, for every i. 

This lemma is due to Nachbin [8]. Two simple proofs of it may be found 
in [7, p. 51]. The second of these proofs (due to Griinbaum) shows that if Sx 
has 2h extreme points and if there are k given cells than Y can be chosen so that 
Sr has at most 2h + 2k extreme points. 

LEMMA 2.2. Let X be an m-dimensional Banach space (m < ~ ) .  Le~t t5 > 0 
and let k {xi},= 1 be a set of points in Sx such that II x, - x j tl >= 2fi for i ~ j . Then 
k ~ (1 .-[- £~-1)m. 
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Proof. The interiors of  the cells Sx(xi,6) are mutually disjoint and all are 
contained in Sx(O, 1 + 6). By considering the volumes of  the cells the result 
follows. 

LEMMA 2.3. Let B(n),  n > 3, be the two-dimensional Banach space whose 
unit celt is the regular 2n-gon. Then there are vectors {bi}~= 1 in B(n) such that 
l lbi l l=2n2/n 2 for  every i and I lb ,+b j l l<=l[b ,H+l lb j [ I -2  for  i # j .  

Proof. Take n consecutive sides of  the boundary of the unit cell of B(n). 
Let bi be the vector of norm 2n2/~ 2 in the direction of the middle of the ith side. 
Then for i ~ j ,  

tl b,___ b,I [ __< 4n2n-2cos2rc/n < 4n2n -2 - 2. 

We are now ready to prove 

Tm~OREM 2.1. Let n be an integer > 3. Then there exist 2" three-dimensional 
Banach spaces {Co} such that for  every O, Sco is a polyhedron with 4n + 2 ver- 
tices and such that there exists no m-dimensional space which is universal for  
all the C o if 2" > 3m(2n  2 + 1) TM . 

Proof. Let B = B(n) and {b~}~'= 1 be as in Lemma 2.3. For  every choice of 
n signs 0 = (Oa,Oz,...,O,) , i.e. 0 i = _+ 1 for every i, there is by Lemma 2.1 a 

Banach space Co=B and a vector uo•Co such that Itu0t] < 1  and 

11 uo-O,b, II-<--II b, II- 1 for e v e r y / .  By the proof  due to Griinbaum of Lemma 
2.1 we can take as C o a space whose unit cell has at most 4n + 2 extreme points. 
We may even assume that Sco has exactly 4n + 2 extreme points (otherwise ap- 
proximate the unit cell by a polyhedron with 4n + 2 vertices and use such an 
approximation as a new unit cell. It will be evident that by doing this we do not 
effect the argument below). 

Choose in B two vectors y , z  with IlYII=I z = 1  such that [12Y+PZ]I < 
max(]2] ,  ] #l) for all2 and/~. We have that b i =  2,y + / h z  with 2 i , 2n2/n2 
for every i. 

Let X be a Banach space of dimension m which is universal for all the Co and 
consider all possible isometric embeddings of B in X.  By Lemma 2.2, with 
6 = 1/(2n2), there exist k < (2n 2 + 1) 2m isometric operators Tj: B ~ X , j =  1,...,k, 

such that for every isometry T : B  ~ X there is a j such that 

(2.1) 1] Ty  - T y  1] < n - 2 '  ]1Tz - Tjz H < n-2 

Take now two different n-tuples of  signs 0' and 0". Let T '  and T" be isometrics 

from Co, and Co,, respectively into X and assume that there is a common j for 
which (2.1) holds for the restrictions of T '  and T" to B. Since 0~ ~ 0[ for some 

i we may assume without loss of generality that 0' I = 1 and 0£'= - 1. Then 
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[I T'u o, - Tjb 1 II -< II Z'uo, - T'bl  ][ + I1T'bl - Tjbl II -< 

<= I[Uo,-blil+2"2n2~-2.n-2<=l[blll-1+4~-2<llb11]-1/2. 
Similarly II z"u0 + r~b~ I! < II 82 I[- 1/2 Since II Zjbl ][--II bl il we get that 
1[ T 'uo"-  T"uo,, I[ > 1. Hence, by Lemma 2.2, there are at most 3" different 0 for 
which there is an isometry To:Co ~ X such that the restriction of To to B satis- 

fies (2.1) for a given j (observe that [1Touo II --< 1 for every 0 and use the lemma 
with 6 = 1/2). Since the number of the indices j is k < (2n 2 + 1) 2m we get that 
2" < 3"(2n 2 + 1) 2'n. Q.E.D. 

Section 3. We present now a simple method for proving the non-existence 
of  certain infinite-dimensional universal spaces. If  X and Y are Banach spaces 
and l < p < o o  we denote by (X@Y)p the space of all pairs (x ,y)  with 

II ~x, y)I[ -- (11 x I[p + II Y 1[ ')I/p if p < oo and = max(] I x II, I! y II) ir p = ~ (x ~ x 
and y e Y). The one dimensional space is denoted by R.  

LEMMA 3.1. Let X be a Banach space and let 1 < p < oo. Assume that 
(X O)R)p is isometric to a subspace of X .  Then X has a subspace isometric to 

Ip if p < ov and to co if p = o o .  

Proof. We consider the case p < oo only, the proof for p = oo is similar. 
By our assumption X contains a vector x 1 with xl ] = 1 and a subspace Y1 
which is isometric to X such that x 1 + y p = 1 + y p for every y E I71. Con- 
tinuing inductively we get for every n a vector x, in Y,_ a with x, = 1 and a 

subspace Y, of Y,-1 which is isometric to X and such that II x, + y ~ = 1 + I y II p 
for every y~  Y,. It follows easily that for every real {2~)7=x we have 

n = " x oo has 1[ Z ,=I  2ix, ][P ~,=1 [~,I p" Hence the subspace of X spanned by { ,},=1 
the desired properties. 

TrrEOR~M 3.1. The following sets of Banach spaces do not have a member 
which is universal for all the spaces in this set. 

(i) All reflexive spaces of a given density character .,¢g. 
(ii) All spaces whose conjugate is separable. 
(iii) All conjugate separable spaces. 
(iv) All spaces of a given density character ~ which do not contain an 

infinite-dimensional reflexive subspace. 

Proof. All these facts follow easily from Lemma 3.1. (i) follows since Co and 
11 are not reflexive. (ii) is a consequence of the fact that l* is not separable. To 

derive (iii) we have to use a result of Bessaga and Petczyfiski [2] that no separ- 
able conjugate space contains a subspace isomorphic to Co. Finally, (iv) follows 

by using the lemma for 1 < p < oo. 

Section 4. In this section we prove that there is no conjugate infinite-dimen- 

sional polyhedral space. First some notations and conventions. Let P be a sym- 
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metric convex body in the plane R 2 . The boundary of P will be denoted by 0P 
and for 0 < e < 1 the interior of  the set (1 + e)P ,,, ( 1 -  e)P will be denoted by 

- nbd 8P. We shall consider in the sequel many norms in R 2 . However, for 
the sake of definiteness we single out one norm (an inner product norm, say) 
and this will be used whenever the symbol II[I is used for a vector in R z or an 
operator into R 2 . All other norms in the plane will appear only implicitly through 

their unit cell and the symbol I1" I1 will not be used for them. If  Y c X and T 
is an operator on X its restriction to Y will be denoted by Tit. 

LEMMA 4.1. Let X be a finite-dimensional Banach space whose unit cell 

is a polyhedron. Let e > 0 and let T be a linear operator f rom X onto R 2. 

Assume that there is a subspace Y of  X of  co-dimension 1 such that T S x  = T S r .  

Then there is an operator T : X . . . , R  2 such that [Izl,- lYlt<= , a ~ S x ~  

e - nbdaTS x and such that T S x  has more extreme points than T S x .  

Proof.  Let {___ ci}~= 1 be the extreme points of T S x  and put Ai = T -  lc i n S x, 

i =  1,2, . . . ,n .  Assume first that there is an index i = i o such that Aid consists 
of  more than one point. Let f e  X* be such that f takes on A~o positive and negative 
values. Let c ~ R 2 be such that {C~o + 2c; 2 s R} n T S x  = C~o and put Tox = 

T x  + Of(x)c. It is easily verified that for small enough 0 the operator To has all 
the properties required from T. 

Assume now that A~ is a single point for every i. By our assumptions A~ s Y for 
every i. For  fi > 0, let T~ be an operator from X into R 2 such that T~ is one to one 

on extS x and II Zll < ~ it is easily checked that for small enough 6 the 
points {___ T~Ai)~= 1 are extreme points of T~S x. Take one such 6 = rio < e/2. If  

TaoSx has more than 2n extreme points we can take T = T~o. If  {_ T~oA~),"= ~ are 
all the extreme points of T~oS x then by the argument of  Klee in [6] there is a 
~ : X - - ~  R 2 such that T i t  = Too It, TSx has more than 2n extreme points and 
8TS x ~ el2 - nbdOTooS x. This operator 7 ~ has all the desired properties. 

LEMMA 4.2. Let P be a symmetr ic  polygon in the plane. Then there is 

e > 0 such that every symmetric  convex body C in the plane for  which 

aC ~ e - nbdOP has at least as many extreme points as P.  

Proof. Obvious. 

THEOREM 4.1. Let X be an infinite-dimensional Banach space. Than X has a 

two-dimensional quotient space whose unit cell is not a polygon. 

Proof. We assume that X is an infinite-dimensional Banach space all whose 

two-dimensional quotient spaces are polygonal and argue to a contradiction. 
By the results of [5] every finite-dimensional quotient space of X is polyhedral. 

Let T~ be a bounded linear operator from X onto R 2 and let T~Sx have 2n~ 
extreme points. Let T I : X  ~ R "'+~ and U1 :R " ~ + ~  R z be linear operators such 
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that T; is bounded and onto and such that T1 = U1T;. Let Za be the (n a + 1)- 
dimensional Banach space whose unit cell is T'aS x. The operator U a maps Szl 
onto T1Sx and by the choice of na there is subspace Y1 of Z1 of codimension 1 such 
that U1Sy~, contains all the extreme points of T1Sx and hence all of T1Sx. Let now 
el > 0 be such that Lemma 4.2 holds with 2el if TISx is taken as P. Choose next 

,fxl"lnl points ~ ~ ~ = 1 in Sx and a 61 > 0 such that Y~x~ e Y1 for every i and such that 
whenever []c~-Tlx][]<=61 for every i the convex hull C of {+c~}7=~1 satisfies 

t3C = ~l -nbdOT1Sx.  (Remark: unless X is reflexive we do not have in general 
that T;Sx = T'ISx and hence we cannot insure the existence of points x~ ~ Sx 
such that Tax] ~ ext T~Sx. But it suffices for our purpose to choose the x~ 
so that the T~xl are near the extreme points of T1Sx). 

By Lemma 4.1 there is an operator 0 1 : R " ' + a ~ R  2 such that OlTIS x has 
2n2 > 2nl extreme points, [l(.71T;x~-Tlx,'l[ < 6 j 2  for every / a n d  Ot71T[S x 

e 1 - nbdOT1S x. Put T2 = ~1T1'. 
Next we choose T~ : X ~ R "~+"~ + 1 and U2: R "~+"' + 1 ._, R2such that T2 = UzT~. 

We take Y2, a subspace of deficiency 1 in Z2 (=  R "~ +"' + 1 with unit cell T2Sx) such 
that T~xt, e Y2 for every i and U2Sy, = U2Sz,.  Let ez > 0 be such that Lemma 4.2 
holds for 2e2, with P =  T2Sx, and such that e 2 -  n b d T 2 S x < e l -  nbdOTaSx'. 
We choose 6 2 > 0 and ~'x2/"~ t , ,~=1 ~ Sx as in the first step and then (by Lemma 
4.1) we choose a 02 such that ]1UzTzxk--T2xk[] <6J22 for k =  1,2, and 
i = 1,... ,nk, OO2~2Sx=e2- nbdOT2Sx and such that the number 2na of ex- 
treme points of ~7~ffx  is greater than 2n2. 

Continuing we get sequences {nk}, {6k}, {ek}, {Tk} and (x k} such that 

(4.1) nx < n2 < "'" < nk < " " .  

(4.2) 2n k is the number of extreme points of TRSx. 

(4.3) ek-nbdaTkS k ~ ek_l-nbdOTk_lSk_l , e k ~, O. 

(4.4) For every symmetric convex body C in R 2 such that aC ~ 2ek-nbdOTkS k 
the number of extreme points of C is > 2n k. 

(4.5) t~if"k~"~si= t c S x  and whenever llci - Tkx~[ I < 6 k f o r i = l , . . . , n  k we have 
0 (convex hull of {_+ ci}~ ,k I) = ek-nbdOTkSk. 

(4.6) t[Tkx[- T~_lx[[]<~/2 ~, i=l,...,nj, j = 1 , 2 , . . . , k - 1 .  

By (4.3) II Tkll < (1 + el)tl T1 !] for every k and hence by the w* compactness 
of  the unit cell of X* the sequence (Tk} has a limit point Tin  the strong (=  weak 
in our case) operator topology. By using (4.3) again we get that TSx c (1 + ek)TkSx 
for every k. Also, by (4.6), II Txk-- Tkxk I[ < 6k for every i and k and hence by 
(4.5) TSx = convex hull of { + Txk}7 k 1 = (1 -- ek)TkSx. We have thus that 
OTSx < 2e~-nbdOTkSx for every k and therefore, by (4.1) and (4.4), T S x  is not 
a polygon. Q.E.D. 
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COROLLARY. No infinite-dimensional conjugate (and in particular reflexive) 
Banach space is polyhedral. 

Section 5. Open problems and remarks. (a). The first problem we mention 
is one which was raised already in [4]. Does there exist a separable reflexive 
space which is universal for all finite-dimensional Banach spaces? Klee observed 

in [4] that the separable reflexive space ( 2~n%1 G l~)2 is universal for all poly- 
hedral finite-dimensional spaces and hence, in an obvious sense, "a lmos t"  uni- 
versal for all finite-dimensional spaces. It follows that in order to establish the 
nonexistence (or, of  course, the existence) of such a universal space, non poly- 
hedral finite-dimensional spaces must be considered. 

The method of  Section 2 may be helpful in this direction. In fact, given any 
two-dimensional non-polyhedral Banach space B then, as is easily seen, there 

b oo is an unbounded sequence { ,},=1 in B such that II b, + b~l I ~ II b, II + 11 bel l -  2 
for every i ¢ j .  By Lemma 2.1 there is for every sequence of signs 

0 = (01,02, 03,.. ')  a three-dimensional space Co containing B and a vector uo ~ Co 
such that II no I1-- 1 and II no-O,b~ II--< 11 b, 11- 1 for e v e r y / .  It is easily verified 
that if for 0 '¢  0" there are isometries T '  and T" from C o, and Co, into a 

Banach space X such that T'[B = T"IB then II T'no , -  z",+, II = 2 t h u s  if x is 
separable there are for every isometry T: B ~ X at most a countable number 

of  sequences 0 for which there is an isometry To:CoaX with TolB= T. It is 
hoped that an argument of  this type suitably combined with a compactness argu- 
ment will prove that there is no separable reflexive (or even conjugate) space 
which is universal for all three-dimensional spaces. It is conceivable that here 
there is a real difference between the two and three dimensional cases. 

(b) Can the method of Section 3 be modified so as to establish the non- 
existence of universal spaces with respect to isomorphism and not only isometry? 
More specifically: let X be a Banach space, let 1 < p < oo and let M < oo. Assume 
that for every k there is an operator 

k 
r~ : ~x + .~. . + x L  + x 

with Ilyll<=HT, yll <__Mlly[I for every y e ( X + . . . ~ ) X ) p .  Must X have a 
subspace isomorphic to Ip if p < ~ or to Co if p = ~ ?  Can one prove at least 
that X is not reflexive if p = 1 or ~ ? 

(c) Here are some problems concerning the existence of  universal spaces in 
certain classes of  Banach spaces. 

(i) Does there exist a separable strictly convex space which is universal for 
all strictly convex separable spaces? 

(ii) Does there exist a separable space with an unconditional basis which is 

universal (in the sense of  isometry or isomorphism) for all separable Banach 
spaces with an unconditional basis? 
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These questions are of the type appearing in Theorem 3.1, yet our method 
does not seem to provide any information concerning them. 

(d) Another kind of problem concerning infinite-dimensional universal 
spaces is exemplified by the following questions. 

(i) Does there exist a separable reflexive space which is universal for all Iv, 
1 < p < o 9 7  

(ii) Does there exist a uniformly convex separable space which is universal 

for all lp, Po < P < Pl (with 1 < Po < Pl < ~ ) ?  
Here it is important to use the term universal as in the introduction (i.e. in 

the sense of  isometry). The corresponding problems for isomorphism have a 
positive answer (see [3] and [9]). 

(e) The following question arises naturally in view of the Corollary to Theo- 
rem 4.1. Does there exist a polyhedral infinite-dimensional Banach space whose 
unit cell is the closed convex hull of its extreme points? 

There exist polyhedral Banach spaces whose unit cell has an infinite number 

of  extreme points. Let X be the space Co of  the sequences x = (x~,x2, ...) con- 
verging to 0 and with norm " I whose unit cell is the convex hull of 
{x;maxl~i___® xi[ _-< 1 } u  {x; ~°= 1 xi __<2}. Then X* is isometric to 11 with 

norm 

I[I(YI'Y2'""Y"'" ')III  = m a x  y,  , max 2 y, . 
1 1_<~_~o~ 

It is easily verified that ext Sx,  consists of  those y = (y~, Y2, '") for which l Y~] = ½ 
for two indices i and = 0 for all other indices. By using the simple criterion given 
in [7, p. 102] it follows now easily that X is polyhedral. Obviously Sx  has an 
infinite number of extreme points. 

Let us also mention the following fact. If  X and Y are polyhedral spaces then 

(X @Y)I is also polyhedral. Since It is not polyhedral it follows by Lemma 3.1 
that for every cardinal number Jr '  there is no universal polyhedral space of den- 
sity character Jr ' .  
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